Visual acuity and biotechnological actions for its study and improvement

Authors

  • Lizbeth A. Nafaté-Lazaro Instituto Nacional de Astrofísica Óptica y Electrónica, Puebla, México.
  • Anabel S. Sánchez-Sánchez Instituto Nacional de Astrofísica Óptica y Electrónica, Puebla, México.

Keywords:

Eyeball, visual acuity, biotechnological tendencies in human vision

Abstract

In this paper is described: first the eyeball as the vision organ; second, what is the visual acuity (VA), and lastly the VA importance for the life and they are mentioned some biotechnological tendencies to increase VA performance.

References

Wang, F. (2009). Axon Guidance: Building Pathways with Molecular Cues in Vertebrate Sensory Systems. 1073-1079. https://doi.org/10.1016/B978-008045046-9.00338-7

Feher, J. (2012). Quantitative Human Physiology. An Introduction. Virginia. https://doi.org/10.1016/C2009-0-64018-6

Zúñiga L. A., Suaste G. E. (2002). Método objetivo para evaluar la agudeza visual dinámica utilizando respuestas pupilares. Revista Mexicana de Ingeniería Biomédica, 23(2), 109 - 115.

Quevedo, L., Aznar-Casanova, J. A., Merindano, D., Solé, J. (2010). Una tarea para evaluar la agudeza visual dinámica y una valoración de la estabilidad de sus mediciones. Psicológica, 31(1), 109-128.

Ting-Yi, W., Yue-Xin, W., Xue-Min, L. (2021). Applications of dynamic visual acuity test in clinical ophthalmology. International Journal of Ophthalmology, 14(11), 1771-1778. https://doi.org/10.18240/ijo.2021.11.18

Chen, G., Zhang, J., Qiao, Q., Zhou, L., Li, Y., Yang, J., Wu, J., Huangfu, H. (2023). Advances in dynamic visual acuity test research. Frontiers in Neurology, 13, 1-10. https://doi.org/10.3389/fneur.2022.1047876

Maeda, T., Mandai, M., Sugita, S., Kime, C., Takahashi, M. (2022). Strategies of pluripotent stem cell-based therapy for retinal degeneration: update and challenges. Trends In Molecular Medicine, 28(5), 388-404. https://doi.org/10.1016/j.molmed.2022.03.001

Medina-Pino., L. M. (2021). Medicina regenerativa: una nueva esperanza contra los daños corneales. RD-ICUAP(21), 100-110. http://rd.buap.mx/ojs-dm/index.php/rdicuap/article/view/612

Fathi, M., Ross, C. T., Hosseinzadeh, Z. (2022). Functional 3-Dimensional Retinal Organoids: Technological Progress and Existing Challenges. Frontiers in Neuroscience, 15, 1-9. https://doi.org/10.3389/fnins.2021.668857

Akiba R, Takahashi M, Baba T, Mandai M. (2023). Progress of iPS cell-based transplantation therapy for retinal diseases. Japanese Journal of Ophthalmology, 67, 119-128. https://doi.org/10.1007/s10384-022-00974-5

Boia, R., Dias, P. A. N., Galindo-Romero, C., Ferreira, H., Aires, I. D., Vidal-Sanz, M., Agudo-Barriuso, M., Bernardes, R., Santos, P. F., de Sousa, H. C., Ambrósio, A. F., Braga, M. E. M., Santiago, A. R. (2022). Intraocular implants loaded with A3R agonist rescue retinal ganglion cells from ischemic damage. Journal of Controlled Release, (343), 469-481. https://doi.org/10.1016/j.jconrel.2022.02.001

Published

2024-07-08

How to Cite

Nafaté-Lazaro, L. A., & Sánchez-Sánchez, A. S. (2024). Visual acuity and biotechnological actions for its study and improvement. Revista De divulgación científica IBIO, 6(3), 172. Retrieved from https://revistaibio.com/ojs33/index.php/main/article/view/172