Twinkle, twinkle, little star: Superresolution microscopy techniques to illuminate the nanoworld

Authors

  • Josué David Hernández-Varela Laboratorio de superresolución y nanoestructuras, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, CDMX, México. https://orcid.org/0000-0002-2068-2681
  • Susana Dianey Gallegos-Cerda Laboratorio de superresolución y nanoestructuras, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, CDMX, México. https://orcid.org/0000-0002-8823-1940
  • José Jorge Chanona-Pérez Laboratorio de superresolución y nanoestructuras, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, CDMX, México. https://orcid.org/0000-0002-5744-8522

Keywords:

Nanoscopy, localization, molecules

Abstract

Since their invention in the 1990s, superresolution microscopy (SRM) techniques have revolutionized the use of specific fluorochromes to observe phenomena at nanoscales and have opened the door to revealing photochemical events through bright flickering at the nanoscale, similar to how stars twinkle in the sky. Thus, in this contribution, the SRM techniques used to observe biological events at the nanoscale are described in general terms.

References

Doetsch, R. N. (1961). History of the Microscope. Science, 133(3456), 946–947. https://doi.org/10.1126/science.133.3456.946

Karlsoon, C. (2009). The beginning. Nature Cell Biology, Milestone 1, S6. https://doi.org/10.1038/ncb1938

Masters, B. R. (2009). A Brief History of the Microscope and Its Significance in the Advancement of Biology and Medicine. Confocal Microscopy and Multiphoton Excitation Microscopy, 3–17. https://doi.org/10.1117/3.660403.ch1

Lawson, I. (2016). Crafting The microworld: How Robert Hooke Constructed knowledge about small things. Notes and Records, 70(1), 23–44. https://doi.org/10.1098/rsnr.2015.0057

Gustafsson, M.G.L. (2000). Surpassing the Lateral Resolution Limit by a Factor of Two Using Structured Illumination Microscopy. Journal of Microscopy, 198, 82-87. https://doi.org/10.1046/j.1365-2818.2000.00710.x

Hickey, S. M., Ung, B., Bader, C., Brooks, R., Lazniewska, J., Johnson, I. R. D., … Brooks, D. A. (2022). Fluorescence microscopy—an outline of hardware, biological handling, and fluorophore considerations. Cells, 11(1). https://doi.org/10.3390/cells11010035

Donaldson, L. (2020). Autofluorescence in plants. Molecules, 25(10). https://doi.org/10.3390/molecules25102393

Gallegos-Cerda, S. D., Hernández-Varela, J. D., Chanona-Pérez, J. J., Arredondo Tamayo, B., & Méndez Méndez, J. V. (2023). Super-Resolution Microscopy and Their Applications in Food Materials: Beyond the Resolution Limits of Fluorescence Microscopy. Food and Bioprocess Technology, 16(2), 268–288. https://doi.org/10.1007/s11947-022-02883-4

Pujals, S., Feiner-Gracia, N., Delcanale, P., Voets, I., & Albertazzi, L. (2019). Super-resolution microscopy as a powerful tool to study complex synthetic materials. Nature Reviews Chemistry, 3(2), 68–84. https://doi.org/10.1038/s41570-018-0070-2

Kabayama, K., & Tero, R. (2018). Super-Resolution Microscopy. In J. Heath & A. Kusserow (Eds.), Compendium of Surface and Interface Analysis (Essential, pp. 651–656). Springer Singapore. https://doi.org/10.1007/978-981-10-6156-1_105

Published

2025-04-05

How to Cite

Hernández-Varela, J. D., Gallegos-Cerda, S. D., & Chanona-Pérez, J. J. (2025). Twinkle, twinkle, little star: Superresolution microscopy techniques to illuminate the nanoworld. Revista De divulgación científica IBIO, 7(2), 207. Retrieved from http://revistaibio.com/ojs33/index.php/main/article/view/207