ATAC-seq, the key to unlock the genome secrets
Keywords:
Chromatin, Transposase, Massive-sequencing, DNA-compaction, BioinformaticsAbstract
The genome of each cell is huge and highly compacted within the nucleus as chromatin. However, not all DNA-encoded information is required simultaneously; only a subset of genes is activated depending on the cell type and specific conditions. Chromatin contains inaccessible regions due to its high compaction level, while accessible areas correspond to functionally active genes. ATAC-seq is a powerful technique for accurately identifying accessible regions of the genome, offering critical insights into gene regulation and chromatin organization.
References
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. (2022). Chromosomal DNA and Its Packaging in the Chromatin Fiber. En: Molecular Biology of the Cell. 4th Edition. New York: Garland Science. Recuperado 27 de enero de 2025, de https://www.ncbi.nlm.nih.gov/books/NBK26834/
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. (2022). The Molecular Genetic Mechanisms That Create Specialized Cell Types. En: Molecular Biology of the Cell. 4th Edition. New York: Garland Science. Recuperado 27 de enero de 2025, de https://www.ncbi.nlm.nih.gov/books/NBK26854/
Parisis, N. (2023). Chromatin Structure Research Methods. MATER METHODS 2019; 9:2797. dx.doi.org/10.13070/mm.en.9.2797
Buenrostro, J., Wu, B., Chang, H., Greenleaf, W. (2016). ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide. Curr Protoc Mol Biol.; 109: 21.29.1–21.29.9. https://doi:10.1002/0471142727.mb2129s109
Wilson-Verdugo, M., Bustos-García, B., Adame-Guerrero, O., Hersch-González, J., Cano-Dominguez, N., Soto-Nava, M., Acosta, C.A., Tusie-Luna, T., Avila-Rios, S., Noriega, L.G., Valdes, V.J. (2024). Reversal of high-glucose–induced transcriptional and epigenetic memories through NRF2 pathway activation. Life Science Alliance 7(8), e202302382. https://doi.org/10.26508/lsa.202302382
Baek, S., Lee, E. (2020). Single-cell ATAC sequencing analysis: From data preprocessing to hypothesis generation. Computational and Structural Biotechnology Journal; (18):1429-1439. https://doi.org/10.1016/j.csbj.2020.06.012
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. (2022). How Genetic Switches Work. En: Molecular Biology of the Cell. 4th Edition. New York: Garland Science. Recuperado 27 de enero de 2025, de https://www.ncbi.nlm.nih.gov/books/NBK26872/
Yan, F., Powell, D.R., Curtis, D.J, Wong, N.C. (2020). From reads to insight: a hitchhiker’s guide to ATAC-seq data analysis. Genome Biology; 21:22. https://doi.org/10.1186/s13059-020-1929-3
Grandi, F.C., Modi, H., Kampman, L., Corces, M.R. (2022). Chromatin accessibility profiling by ATAC-seq. Nature Protocols. 1518-1552. https://doi.org/10.1038/s41596-022-00692-9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista de divulgación científica iBIO

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Self-archiving or deposit of the works in their post-publication version (editorial version) is permitted in any personal, institutional or thematic repository, social or scientific networks. The above applies from the moment of publication of the article in question on the website of the Revista de divulgación científica iBIO.